Electrostatically Embedded Many-Body Expansion for Simulations.
نویسندگان
چکیده
We have applied the electrostatically embedded many-body (EE-MB) method truncated at the two-body level (also called the pairwise additive EE-MB method or the EE-PA approximation) and the three-body level (called EE-3B) to calculate the gradient of the potential energy for a simulation box containing 64 water molecules. We employed the B3LYP density functional with the 6-31+G(d,p) basis set for this test case. We found that the EE-PA method is able to reproduce the magnitude of the gradient from a B3LYP/6-31+G(d,p) calculation on the entire system to within 1.0% with a 1.3% error for the maximum component of the gradient. Furthermore, the EE-3B method is able to reproduce the magnitude of the gradient to within 0.1% with a 0.2% error for the maximum component of the gradient. The good performance of the EE-MB methods for calculating forces and the highly parallel nature of these methods make them well suited for use in molecular dynamics simulations. Furthermore, since the methods can be used for efficient and accurate calculations of forces with any level of electronic structure theory that has analytic gradients and with any electronic structure package that allows for the presence of a field of point charges, these methods can readily be used with a wide variety of density functional theory and wave function theory methods.
منابع مشابه
Application of the Electrostatically Embedded Many-Body Expansion to Microsolvation of Ammonia in Water Clusters.
The electrostatically embedded many-body expansion (EE-MB), at both the second and third order, that is, the electrostatically embedded pairwise additive (EE-PA) approximation and the electrostatically embedded three-body (EE-3B) approximation, are tested for mixed ammonia-water clusters. We examine tetramers, pentamers, and hexamers for three different density functionals and two levels of wav...
متن کاملElectrostatically Embedded Many-Body Correlation Energy, with Applications to the Calculation of Accurate Second-Order Møller-Plesset Perturbation Theory Energies for Large Water Clusters.
The electrostatically embedded many-body expansion (EE-MB), previously applied to the total electronic energy, is here applied only to the electronic correlation energy (CE), combined with a Hartree-Fock calculation on the entire system. The separate treatment of the Hartree-Fock and correlation energies provides an efficient way to approximate correlation energy for extended systems. We illust...
متن کاملElectrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters.
The use of background molecular charge to incorporate environmental effects on a molecule or active site is widely employed in quantum chemistry. In the present article we employ this practice in conjunction with many-body expansions. In particular, we present electrostatically embedded two-body and three-body expansions for calculating the energies of molecular clusters. The system is divided ...
متن کاملElectrostatically embedded many-body method for dipole moments, partial atomic charges, and charge transfer.
Fragment methods have been widely studied for computing energies and forces, but less attention has been paid to nonenergetic properties. Here we extend the electrostatically embedded many-body (EE-MB) method to the calculation of cluster dipole moments, dipole moments of molecules in clusters, partial atomic charges, and charge transfer, and we test and validate the method by comparing to resu...
متن کاملA Numerical Improvement in Analyzing the Dynamic Characteristics of an Electrostatically Actuated Micro-beam in Fluid Loading with Free Boundary Approach
Electrostatically actuated microbeams have been studied by many researchers in the last few years. The aim of this study is to present an improved numerical analysis of the dynamic instability of a cantilever microbeam immersed in an incompressible viscous fluid. The finite element method is used for solving the vibrational equation of the microbeam and the potential functions of the fluids in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical theory and computation
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2008